| Register
\(\newcommand{\Cat}{{\rm Cat}} \) \(\newcommand{\A}{\mathcal A} \) \(\newcommand{\freestar}{ \framebox[7pt]{$\star$} }\)

3. Another section

testing $ x^x $ foo bar
    1.     Let $c(h/k):=V(\overline{h},k).$

      Problem 3.05.

      [Brian Conrey] Prove that $c$ satisfies a reciprocity formula \begin{eqnarray} xc(x)+c(1/x)-\frac{1}{\mbox{Den}(x)}=\psi(x) \end{eqnarray} where $\psi(x)$ can be analytically continued to $\mathbf{C}'$, the complex plane minus the negative real axis.
        1. Remark. What does "Den" mean?
            •     This is a complicated equation

              Problem 3.15.

              \begin{eqnarray*} \sum_{n=1}^\infty \frac{1}{n^2}&=& 1+\frac{1}{2^2}+\frac{1}{3^2}+\dots \\ &=& \frac{\pi^2}{6}. \end{eqnarray*}
                • The Four Color theorem

                      This is a famous old problem.

                  Conjecture 3.2.

                  [Rob Beezer] A planar map can be colored with four or fewer colors and there is a proof without a laborious number of cases.
                      Famously not yet done.
                    1. Remark. Test remark
                        • Remark. 33
                            • Remark. [org.aimpl.user:aaa] Something new.
                                • Remark. testo
                                    •     Recall that the Vasyunin sum is $$V(h,k)=\sum_{a=1}^{k-1}\frac{a}{k} \cot \frac{\pi \overline{a} h}{k}.$$

                                      Problem 3.45.

                                      [Brian] Prove that $$V(-h,k)=V(h,k).$$
                                        • Problem 3.5.


                                              Cite this as: AimPL: Try out this list!, available at http://aimpl.org/test.