3. Another section
testing $ x^x $ foo bar-
Let $c(h/k):=V(\overline{h},k).$
Problem 3.05.
[Brian Conrey] Prove that $c$ satisfies a reciprocity formula \begin{eqnarray} xc(x)+c(1/x)-\frac{1}{\mbox{Den}(x)}=\psi(x) \end{eqnarray} where $\psi(x)$ can be analytically continued to $\mathbf{C}'$, the complex plane minus the negative real axis.-
Remark. What does "Den" mean?
-
-
This is a complicated equation
Problem 3.15.
\begin{eqnarray*} \sum_{n=1}^\infty \frac{1}{n^2}&=& 1+\frac{1}{2^2}+\frac{1}{3^2}+\dots \\ &=& \frac{\pi^2}{6}. \end{eqnarray*} -
The Four Color theorem
This is a famous old problem.Conjecture 3.2.
[Rob Beezer] A planar map can be colored with four or fewer colors and there is a proof without a laborious number of cases.-
Remark. Test remark
-
Remark. 33
-
Remark. [org.aimpl.user:aaa] Something new.
-
Remark. testo
-
-
Recall that the Vasyunin sum is $$V(h,k)=\sum_{a=1}^{k-1}\frac{a}{k} \cot \frac{\pi \overline{a} h}{k}.$$
Problem 3.45.
[Brian] Prove that $$V(-h,k)=V(h,k).$$
Cite this as: AimPL: Try out this list!, available at http://aimpl.org/test.