2. Random matrix models with external source
-
Random matrices with external source. More general cases
A more general situation involves an external source term $A$ with several different eigenvalues $\{a_i\}_{i=1}^{j}$, and multiplicities $\{n_i\}_{i=1}^j$, where $n=n_1+n_2+\ldots+n_j$. It is assumed that all limits $c_j=\lim_{n\to\infty} \frac{n_j}{n}$ exist.Problem 2.1.
[Pavel Bleher] Study the random matrix model with probability measure $$ \frac{1}{Z_N}e^{-N\textrm{tr}(V(M)-AM)}, $$ where $A$ is an $N\times N$ diagonal matrix with eigenvalues $\pm a$ (each with equal multiplicity $N/2$, assuming $N$ is even), and $V(M)$ is a general polynomial. -
$2+1/2$ random matrix models
Problem 2.2.
[A. Martínez-Finkelshtein] A general question about Riemann-Hilbert techniques to study the two-matrix plus external source model.
Cite this as: AimPL: Vector equilibrium problems and random matrix models, available at http://aimpl.org/vectorequilib.