| Register
\(\newcommand{\Cat}{{\rm Cat}} \) \(\newcommand{\A}{\mathcal A} \) \(\newcommand{\freestar}{ \framebox[7pt]{$\star$} }\)

2. Well-posedness and sharp enstropy bound of quasilinear systems

    1. Problem 2.1.

      [Bartosz Protas] Prove sharp estimates of the $H ^1$ norm of solutions to the 1D periodic viscous Burger’s equation. It is proven the enstrophy $\mathcal E (t) := \left\|{\partial _x u (t)}\right\| _{L ^2} ^2$ obeys \begin{align*} \mathcal E’ (t) \le C \mathcal E (t) ^\frac53. \end{align*} Prove the following bound which comes from numerical evidences: \begin{align*} \mathcal E (t) \le C \mathcal E (0) ^\frac32. \end{align*}
        • Problem 2.2.

          [Adam Larios] Prove the global existence of the 2D Burger’s equation with hyperviscosity. \begin{align*} \partial _t u + u \cdot \nabla u = -\nu \Delta ^2 u \end{align*}
            • Problem 2.3.

              [Wojciech Ozanski] Prove the global existence of strong solutions to the 1D surface growth model. \begin{align*} \partial _t u + u _{xxxx} + \partial _{xx} (u _x ^2) = 0 \end{align*} Show the ill-posedness of the inviscid version of this model.

                  Cite this as: AimPL: Criticality and stochasticity in quasilinear fluid systems, available at http://aimpl.org/stochasticfluid.