| Register
\(\newcommand{\Cat}{{\rm Cat}} \) \(\newcommand{\A}{\mathcal A} \) \(\newcommand{\freestar}{ \framebox[7pt]{$\star$} }\)

2. Steklov-Maxwell

    1. Steklov spectrum for the Lamé operator

      Problem 2.1.

      [Michael Levitin] On a domain with corners, find the behaviour in $\kappa$ of the Steklov problem for the Lamé operator, $$ \begin{cases}\Delta u + \kappa \nabla \operatorname{div} u = 0 \\ \sum_k c_{j_k} \frac{\partial u_k}{\partial x_j} = \lambda u_j \end{cases}$$
        • What is the Steklov-Maxwell problem?

              There is many different formulations for the Steklov-Maxwell problem. How are they related?

          Problem 2.2.

          [Nilima Nigam] Find the most natural formulation of the Steklov-Maxwell problem.

              Cite this as: AimPL: Steklov eigenproblems, available at http://aimpl.org/stekloveigen.