| Register
\(\newcommand{\Cat}{{\rm Cat}} \) \(\newcommand{\A}{\mathcal A} \) \(\newcommand{\freestar}{ \framebox[7pt]{$\star$} }\)

3. Geometry

    1. Problem 3.1.

      [Qing Han] (Problem originally proposed by Fang-Hua Lin) Let $(T^2,g_0) \subseteq (\mathbb R^3, g_{\mathrm{eucl}})$ be an isometric embedding and $g$ be a metric on $T^2$ which is $C^0$ close to $g_0$. Is there an isometric embedding of $(T^2,g)$ in $\mathbb R^3$?

          Cite this as: AimPL: Nonlinear PDEs in real and complex geometry, available at http://aimpl.org/nonlinpdegeom.