Loading Web-Font TeX/Math/Italic
| Register
\newcommand{\Cat}{{\rm Cat}} \newcommand{\A}{\mathcal A} \newcommand{\freestar}{ \framebox[7pt]{$\star$} }

Analysis on the hypercube with applications to quantum computing

Edited by Haonan Zhang

We fix some notation. For all n\ge 1, any function f:\{-1,1\}^n\to \mathbb{R} has the unique Fourier expansion \begin{equation*} f=\sum_{S\subset [n]}\widehat{f}(S)\chi_S \end{equation*}
where for each S\subset [n]:=\{1,\dots, n\}, \widehat{f}(S)\in\mathbb{R} and \chi_S(x):=\prod_{j\in S}x_j. The degree of f is the maximal |S| for which \widehat{f}(S)\neq 0. For d\ge 1, f is d-homogeneous in case it is a linear combination of \chi_S,|S|=d. The variance of f is \begin{equation*} \text{Var}(f)=\sum_{S\neq \emptyset}\widehat{f}(S)^2. \end{equation*}
For 1\le j\le n, the influence of j-th variable of f is defines as \begin{equation*} \text{Inf}_j(f):=\sum_{j\in S}\widehat{f}(S)^2. \end{equation*}
We always equip \{-1,1\}^n with the uniform probability measure and denote by \|\cdot\|_p the corresponding L_p-norm, 1\le p\le \infty. For 1\le j\le n, denote \begin{equation*} D_j f(x):=\frac{f(x)-f(x^{\oplus j})}{2}, \end{equation*}
where f(x^{\oplus j}):=f(x_1,\dots, x_{j-1}, -x_j,x_{j+1},\dots, x_n). Note that D_j^2=D_j. The heat semigroup on \{-1,1\}^n is P_t=e^{-t\Delta} with \Delta=\sum_{j=1}^{n}D_j. The sensitivity of f at x\in\{-1,1\}^n is defined as \begin{equation*} s(f,x):=\sharp {1\le j\le n: f(x)\neq f(x^{\oplus j})}, \end{equation*}
and the sensitivity of f is \begin{equation*} s(f):=\max{s(f,x):x\in{-1,1}^n}. \end{equation*}
Similarly, the block sensitivity bs(f,x) of f at x is the maximum number of disjoint subsets B_1,\dots, B_k of [n] such that f(x)\neq f(x^{\oplus B_j}) for all 1\le j \le k, where x^{\oplus B} denotes the input that flips the values in B\subset [n]. The block sensitivity bs(f) of f is then defined as \max\{bs(f,x):x\in\{-1,1\}^n\}.

    Sections

    1. Bibliography

      Cite this as: AimPL: Analysis on the hypercube with applications to quantum computing, available at http://aimpl.org/hypercubequantum.