3. Structural Properties of von Neumann Algebras
-
McDuff
Problem 3.1.
[C. Houdayer] Assume that M\cong P_1\bar\otimes P_2 is McDuff. Does it follow that P_1 or P_2 is McDuff? -
Problem 3.2.
[S. Popa] If \beta_1^{(2)}(\Gamma)\neq 0 , then does it follow that \Gamma is Cartan rigid. -
Problem 3.3.
[S. Raum] Let G is a totally disconnected group and K\subseteq G compact.- When do the K invariant vectors in L^2(K\backslash G) \subset L^2(G) generate L^2(G) .
- Describe criteria for the factoriality of L(K\backslash G / K)
-
Problem 3.4.
[S. Vaes]- Find two trace-scaling automorphisms of L(\mathbb{F}_\infty)\bar\otimes \mathbb{B}(\ell^2) that are not outer conjugate.
- Find two non-isomorphic type III_\lambda factors with discrete core L(\mathbb{F}_\infty)\bar\otimes \mathbb{B}(\ell^2) .
-
Problem 3.5.
[Rolando de Santiago] Classify Cartan subalgebras of a II_1 factor M when M does not have a unique Cartan.
Cite this as: AimPL: Classification of group von Neumann algebras, available at http://aimpl.org/groupvonneumann.