| Register
\(\newcommand{\Cat}{{\rm Cat}} \) \(\newcommand{\A}{\mathcal A} \) \(\newcommand{\freestar}{ \framebox[7pt]{$\star$} }\)

4. Number theoretic questions

    1. Problem 4.1.

      [Snyder] Is there a sense in which a randomly chosen fusion graph doesn’t have cylotomic dimensions?
        • Problem 4.2.

          [Snyder] Look at all spoke graphs with $N>0$ arms. Are there finitely many $N$-tuples $(\ell_1,\dots, \ell_N)$ such that the spoke graph with $N$ arms of lengths $\ell_1,\dots, \ell_N$ has cyclotomic norm squared?
            • Problem 4.1.

              [Morrison] Is there a positive real number which is a cyclotomic integer and is largest amongst its Galois conjugates, but which is not realized as the dimension of an object in a fusion category?
                1. Remark. [Scott Morrison] The first five such numbers above 2, given in [arxiv:1004.0665], are all known to be realized.

                      Cite this as: AimPL: Classifying fusion categories, available at http://aimpl.org/fusioncat.