| Register
\(\newcommand{\Cat}{{\rm Cat}} \) \(\newcommand{\A}{\mathcal A} \) \(\newcommand{\freestar}{ \framebox[7pt]{$\star$} }\)

2. The Brauer group

    1. Problem 2.1.

      Fix $d \geq 3$. Assume that we know:

      $\operatorname{ind} (\alpha) | \operatorname{Per}(\alpha)^{d-1}$, for all $\alpha \in \operatorname{Br}(X)$, for all smooth, projective $X$ over $\overline{\mathbb{F}_p}$. (Here $d = \dim (X)$.)

      Can we use this, by a boundedness argument, to show the same thing for $\alpha \in \operatorname{Br}(Y)$, where $Y$ smooth, projective, $\dim(Y) = d$ over $\C$?
        • Problem 2.2.

          Is every Brauer class over $\C(s,t)$ cyclic?
            1. Remark. This type of question does not reduce to the prime case.
                •     A variant of Problem 2.2:

                  Problem 2.3.

                  Higher cohomology $H^d(F, \pmb{\mu}_n^{\otimes d})$, where $d = \dim (F)$.
                    • Problem 2.4.

                      When is $\operatorname{Br}(X) = \operatorname{Br'}(X)$?
                        1. Remark. If $X$ is quasi-proj, then yes.

                              Cite this as: AimPL: Deformation theory and the Brauer group, available at http://aimpl.org/deformationbrauer.