1. Nonlinear enhanced dissipation for the 2D Euler equation with horizontal viscosity
Consider the 2D Euler equation with horizontal viscosity on \mathbb{T}\times [0,1]: \partial_t \omega + u \cdot \nabla \omega = \nu \partial_{xx} \omega,
u=\nabla^\perp\Delta^{-1}\omega.
How large can \nu \int_\Omega |\partial_x \omega|^2 get as \nu\to 0 and t\rightarrow\infty?
Cite this as: AimPL: Small scale dynamics in incompressible fluid flows, available at http://aimpl.org/smallscalefluid.