Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/AMS/Regular/Main.js
| Register
\newcommand{\Cat}{{\rm Cat}} \newcommand{\A}{\mathcal A} \newcommand{\freestar}{ \framebox[7pt]{$\star$} }

1. Nonlinear enhanced dissipation for the 2D Euler equation with horizontal viscosity

Consider the 2D Euler equation with horizontal viscosity on \mathbb{T}\times [0,1]: \partial_t \omega + u \cdot \nabla \omega = \nu \partial_{xx} \omega,
u=\nabla^\perp\Delta^{-1}\omega.
How large can \nu \int_\Omega |\partial_x \omega|^2 get as \nu\to 0 and t\rightarrow\infty?

      Cite this as: AimPL: Small scale dynamics in incompressible fluid flows, available at http://aimpl.org/smallscalefluid.