Loading Web-Font TeX/Math/Italic
| Register
\newcommand{\Cat}{{\rm Cat}} \newcommand{\A}{\mathcal A} \newcommand{\freestar}{ \framebox[7pt]{$\star$} }

3. Tensor products

    1. Problem 3.1.

      Does the number of C*-norms on A\otimes _{alg}B for

      • A=B=\mathcal{B}\left( H\right)

      • A=B=C^{\ast }\left( \mathbb{F}_{\infty }\right) , where \mathbb{F}% _{\infty } is the free group on countably many generators

      • A=B\left( H\right) and B=\mathcal{Q}\left( H\right) where % \mathcal{Q}\left( H\right) is the Calkin algebra


      depend on the model of set theory?
        • Problem 3.2.

          What is the ideal structure of \mathcal{B}\left( H\right) \otimes _{\min }\mathcal{Q}\left( H\right) ? Does it depend on the model of set theory?
            • Problem 3.3.

              Does \otimes _{\min } or \otimes _{\max } commute with forcing?

                  Cite this as: AimPL: Set theory and C* algebras, available at http://aimpl.org/settheorycstar.