3. Tensor products
-
Problem 3.1.
Does the number of C*-norms on $A\otimes _{alg}B$ for- $A=B=\mathcal{B}\left( H\right) $
- $A=B=C^{\ast }\left( \mathbb{F}_{\infty }\right) $, where $\mathbb{F}%
_{\infty }$ is the free group on countably many generators
- $A=B\left( H\right) $ and $B=\mathcal{Q}\left( H\right) $ where $% \mathcal{Q}\left( H\right) $ is the Calkin algebra
depend on the model of set theory? - $A=B=\mathcal{B}\left( H\right) $
-
Problem 3.2.
What is the ideal structure of $\mathcal{B}\left( H\right) \otimes _{\min }\mathcal{Q}\left( H\right) $? Does it depend on the model of set theory?
Cite this as: AimPL: Set theory and C* algebras, available at http://aimpl.org/settheorycstar.