3. Tensor products
-
Problem 3.1.
Does the number of C*-norms on A\otimes _{alg}B for- A=B=\mathcal{B}\left( H\right)
- A=B=C^{\ast }\left( \mathbb{F}_{\infty }\right) , where \mathbb{F}%
_{\infty } is the free group on countably many generators
- A=B\left( H\right) and B=\mathcal{Q}\left( H\right) where % \mathcal{Q}\left( H\right) is the Calkin algebra
depend on the model of set theory? - A=B=\mathcal{B}\left( H\right)
-
Problem 3.2.
What is the ideal structure of \mathcal{B}\left( H\right) \otimes _{\min }\mathcal{Q}\left( H\right) ? Does it depend on the model of set theory?
Cite this as: AimPL: Set theory and C* algebras, available at http://aimpl.org/settheorycstar.