1. Ultrapowers
-
Problem 1.1.
Does every separable C*-algebra embed into an ultrapower of \mathcal O_2 with respect to an ultrafilter on \mathbb N?-
Remark. [Kirchberg] Every exact C*-algebra embeds into \mathcal O_2.
-
-
If \phi_j\colon A\to \prod_{\mathcal U} \mathcal O_2 are *-homomorphisms, write \phi_1\leq \phi_2 if there is a partial isometry u in A such that u^*\phi_2 u=\phi_1.
Problem 1.2.
[Kirchberg] Assume A is separable and A embeds into \prod_{\mathcal U}\mathcal O_2. Is there a \leq-maximal embedding \phi of A into \prod_{\mathcal U}\mathcal O_2? -
Problem 1.3.
Can one prove in ZFC that for some free ultrafilter \mathcal U on \mathbb N we have \mathcal{B}\left( H\right) '\cap \prod_{\mathcal U}\mathcal{B}\left( H\right) = \mathbb C I? -
An ultrafilter \mathcal U on \mathbb N is flat if there are h_n\colon \mathbb N\searrow [0,1] such that
- h_n(0)=1,
- \lim_j h_n(j)=0,
- (\forall f\colon \mathbb N\nearrow \mathbb N)\lim_{n\to \mathcal U} \sup_{j\in \mathbb N} |h_n(j)-h_n(f(j))|=0.
Problem 1.4.
Is a nonprincipal ultrafilter such that \mathcal{B}\left( H\right) '\cap \mathcal{B}\left( H\right) ^{\mathcal U}\neq \mathbb C I flat?
Cite this as: AimPL: Set theory and C* algebras, available at http://aimpl.org/settheorycstar.