4. Fourier uniformity
-
Problem 4.1.
How much can we lower $H$ in the local Fourier uniformity conjecture \begin{equation*} \int_X^{2X} \sup_\alpha \left| \sum_{x\leq n\leq x+H} \lambda(n) e(n\alpha) \right| d x = o(HX)? \end{equation*}-
Remark. [J. Teräväinen] In [https://arxiv.org/abs/2007.15644], Matomäki, Radziwiłł, Tao, Teräväinen and Ziegler proved this for $H\geq \exp((\log X)^{5/8+\varepsilon})$ for any $\varepsilon>0$.
-
-
Problem 4.2.
Can we extend the local Fourier uniformity conjecture to nilsequences? Warm-up: do it for polynomial phases.-
Remark. [J. Teräväinen] In [https://arxiv.org/abs/2007.15644], Matomäki, Radziwiłł, Tao, Teräväinen and Ziegler obtained this extension in the regime $H\geq X^{\varepsilon}$ for any $\varepsilon>0$.
-
-
Problem 4.3.
Can we prove the local Fourier uniformity conjecture in function fields? Would that suffice to obtain the full logarithmic Chowla conjecture?
Cite this as: AimPL: Sarnak's conjecture, available at http://aimpl.org/sarnakconjecture.