3. Spectrum of Hilbert Matrices
-
Problem 3.1.
[Alfonso Montes Rodriguez] The \mathscr{l}^2-spectrum for the Hilbert matrix H_{m n}=\frac{1}{m+n+1} is known. Find the spectrum on spaces of the form \mathscr{l}_2(\alpha)={\sum |a_n|^2(n+1)^{\alpha}<\infty}. -
Problem 3.2.
[Alfonso Montes Rodriguez] Define u_{\xi, \alpha(z)}=e^{-\alpha\Big(\frac{\xi+z}{\xi-z}\Big)},for \alpha >0 and |\xi|=1. Given \xi_1, \xi_2, \xi_3 and \alpha_1, \alpha_2, \alpha_3, can we approximate \sum_{m=0}^{\infty} c_m^{(1)}u_1^m+c_m^{(2)}u_2^m+c_m^{(3)}u_3^m?
Cite this as: AimPL: Riemann-Hilbert problems, Toeplitz matrices, and applications, available at http://aimpl.org/riemhilberttoeplitz.