Loading Web-Font TeX/Math/Italic
| Register
\newcommand{\Cat}{{\rm Cat}} \newcommand{\A}{\mathcal A} \newcommand{\freestar}{ \framebox[7pt]{$\star$} }

2. Riemann-Hilbert Problems

    1. Problem 2.1.

      [Tamara Grava] Given Q, produce Q(z^d) with multiple disjoint support sets for the droplet. Study the soft Riemann-Hilbert problem for orthogonal polynomials.
        • Problem 2.2.

          [Pavel Blaher] Study potential theory for k \times k Riemann-Hilbert problems for k>2 when multiple orthogonal polynomials are involved.
            • Problem 2.3.

              [Manuela Girotti] In general, can you pose matrix Riemann Hilbert problems for KdV?
                • Problem 2.4.

                  [Aron Wennman] For planar orthogonal polynomials, we know that \overline{\partial} Y=\overline{Y} \begin{bmatrix} 0 & w \\ 0 & 0 \\ \end{bmatrix}
                  and \int p_j\overline{p_k}wdA=h_j\delta_{j,k}.
                  Is there an analogue of small norm theory of such \overline{\partial}-problems (i.e. \overline{\partial} A=\overline{A} W +AV?) Or small norm theory for A_{+}-A_{-}=\overline{A_{-}}V_C+A_{-}V_n?
                    • Problem 2.5.

                      [Ken McLaughlin] Analyze the condition given by \overline{\partial}\phi=\overline{H_n}e^{-NQ},
                      where Q=|z|^2+2t\text{Re}(z^2) and where \overline{H_n} is Hermite.
                        • Problem 2.6.

                          [Tomas Berggren] Consider \prod_{i=1}^N \begin{bmatrix} 1 & a_iz \\ b_i & 1 \\ \end{bmatrix},
                          for constants a_i, b_i. Suppose Wiener-Hopf factorization has no partial indices. Study the behavior as N \rightarrow \infty. The asymptotics are known if the a_i’s and b_i’s are periodic. What happens in the more general case?
                            • Problem 2.7.

                              [Haakan Hedemaim] Consider Z_N=\int_{\Gamma} \cdots \int_{\Gamma} \prod_{i \leq j < k \leq N} |z_k-z_j|^{2\beta} \prod_{j=1}^N\Big(\frac{1}{1+|z_j|^2}\Big)^{(N-1)\beta+1} d|z_1| \cdots d|z_N|.
                              Study Z_N as N \rightarrow \infty, where \Gamma is a smooth loop on the Riemann sphere.
                                • Problem 2.8.

                                  [Maksim Kosmakov] The discrete Bessel process is connected to Poissonized Plancherel measure. Consider the distance of the largest particle: \mathbb{P}[Q_{\text{max}}\leq x]=q(x), where q solves the cylindrical Toda equation. Take the limit to get cylindrical KdV. Is there a connection to Riemann-Hilbert Problems?
                                    • Problem 2.9.

                                      [Estelle Basor] Formulate and then analyze general finite matrix symbol with the analog of zeros and jumps.

                                          Cite this as: AimPL: Riemann-Hilbert problems, Toeplitz matrices, and applications, available at http://aimpl.org/riemhilberttoeplitz.