| Register
\(\newcommand{\Cat}{{\rm Cat}} \) \(\newcommand{\A}{\mathcal A} \) \(\newcommand{\freestar}{ \framebox[7pt]{$\star$} }\)

16. Factor rings and $\sigma$-invariant valuations

    1. Problem 16.1.

      [Sue Sierra] Let $A$ be a graded domain of GK dimension 3 (generated in degree 1?), so that $Q_{\text{gr}}(A) = D[x,x^{-1};\sigma]$. Is there a relation between:

      1. Factor rings of $A$ which are twisted homogeneous coordinate rings of curves; and

      2. $\sigma$-invariant valuations on $D$?

          Cite this as: AimPL: Noncommutative surfaces and Artin's conjecture, available at http://aimpl.org/ncsurfaceartin.