13. Finding Subsets of Vectors with Large Average Correlation
-
Problem 13.1.
[Alex Andoni] For $\varepsilon,\delta>0$ and unit vectors $v_1,v_2,\ldots,v_n\in \ell_2$, consider the following two properties:- (a) $\langle v_i, v_j\rangle \le 2\varepsilon$ whenever $i\neq j$, and
- (b) for each $i$, there exists $A_i\subseteq \{1,2,\ldots,n\}$ such that $|A_i|\ge n^{1-\delta}$ and $\langle v_i, v_j\rangle \ge \varepsilon$ for all $j\in A_i$.
Cite this as: AimPL: Metric embeddings, available at http://aimpl.org/metricembeddings.