4. Anti-hyperbolicity of K-moduli
-
Problem 4.1.
(Z. Patakfalvi) Assume deformation is unobstructed for some K-moduli space $M$, is it true that $K_M$ should not be more positive than $c \cdot \lambda_{CM}$ (i.e. $c \cdot \lambda_{CM} - K_M$ ample), where $c=c(\delta, \mathrm{vol})$? Smooth part comes from Schumacher metrically. Estimate the geometry (e.g. Kodaria dimension) of $M$ using $\delta, \mathrm{vol}$.
Cite this as: AimPL: K-stability and related topics, available at http://aimpl.org/kstability.