3. Special degeneration
-
Problem 3.1.
(C. Xu) Conj: Given a klt Fano variety $X$, there is a bounded family of special degeneration of $X$. The local (global?) version of Higher Rank Finite Generation Conjecture (HRFG) implies this one. -
Problem 3.2.
(I. Cheltsov) What about Manetti surfaces? $\mathbb{P}^2 \rightsquigarrow \mathbb{P}^2(a^2,b^2,c^2) , a^2+b^2+c^2=3abc$. -
Problem 3.3.
(Z. Zhuang) Can you get the finite wall-chamber structure from global HRFG Conjecture? -
Problem 3.4.
(Y. Liu) There exists special degeneration $\mathbb{P}^2 \rightsquigarrow \mathbb{P}(1,1,4), \mathbb{P}(1,4,25), X_{26} \subset \mathbb{P}(1,2,13,25)$ (Ascher-DeVleming-Liu). Are there other special degeneration of $\mathbb{P}^2$? -
Problem 3.5.
(I. Cheltsov) Given a del Pezzo surface filtrations over a curve (Mori fiber space), assume all fibers are irreducible, what are the singularities of the central fiber? Conj: bounded irregularity. -
Problem 3.6.
(C. Li) Find explicit description of isotrivial degeneration $\mathbb{P}^2 \rightsquigarrow \mathbb{P}(a^2,b^2,c^2)$.
Cite this as: AimPL: K-stability and related topics, available at http://aimpl.org/kstability.