10. Berman-Gibbs invariant
-
Problem 10.1.
(H. Blum) Does the Berman-Gibbs invariant \gamma equal to \delta? (Fujita-Odaka: \gamma \leq \delta) -
Problem 10.2.
(Z. Zhuang) \gamma is tested by G=\mathrm{Aut}(X)-invariant divisors. So maybe \gamma = \delta^{G} when one of them \leq 1?
Cite this as: AimPL: K-stability and related topics, available at http://aimpl.org/kstability.