10. Berman-Gibbs invariant
-
Problem 10.1.
(H. Blum) Does the Berman-Gibbs invariant $\gamma$ equal to $\delta$? (Fujita-Odaka: $\gamma \leq \delta$) -
Problem 10.2.
(Z. Zhuang) $\gamma$ is tested by $G=\mathrm{Aut}(X)$-invariant divisors. So maybe $\gamma = \delta^{G}$ when one of them $\leq$ 1?
Cite this as: AimPL: K-stability and related topics, available at http://aimpl.org/kstability.