[2007/11/11]

STABILITY AND HYPERBOLICITY

EDITED BY

A list of the problems from the workshop on stability, hyperbolicity, and zero localization of functions, held December 5-9, 2011, is presented below. The problems have been loosely categorized for convenience, although many of the problems could be listed under several different headings.

1. MULTIPLIER SEQUENCES AND CZDS

Problem 3.1. Let $\{c_k\}_{k=0}^n \subset \mathbb{R}$ be given. Does there exist a real rooted polynomial, p(x), with zeros outside [0, n] such that $c_k = p(k)$, k = 0, 1, ..., n?

Problem 3.2. Let f(z) be a meromorphic function. When is the sequence $\{f(k)\}_{k=0}^{\infty}$ a multiplier sequence?

2. MATRIX THEORY

Problem .1. Study the zeros of Bessis-Moussa-Villani polynomials $t \to tr(A + tB)^m$.

Problem .2. Find a simple proof of BMV conjecture for 3×3 matrices (and an explicit formula for the BMV measure for 3×3 matrices; the existence of the measure is due to recent work of Stahl).

Problem .3. Given $p \in \mathbb{C}[x]$, $\deg(p) = n$, find an $n \times n$ Hermitian matrix whose inertia (n_+, n_-, n_0) counts the zeros of p in $H_+, H_-, H_0 = \mathbb{R}$.

Problem .4. Any real polynomial can be written as $det(A - \lambda I)$, where A has the (tridiagonal) form

$$\left[cccccc + + -0 + -0 + \cdots \cdots - 0 + - - \right.$$

.

Problem .5. Investigate the signs of Hurwitz minors for Pólya frequency sequences.

3. Log Concavity

Let \mathcal{L} - \mathcal{P} denote the class of functions which are locally uniform limits of polynomials having only real zeros, and let the class of functions in \mathcal{L} - \mathcal{P} which have only non-negative Maclaurin coefficients be denoted \mathcal{L} - \mathcal{P} ⁺.

2 EDITED BY

Problem .1. Let

$$Q_n^{(\alpha,\beta)} := \sum_{k=0}^n \binom{n}{k} f_k f_{n-k} ((x+\alpha)_k (x+\beta)_{n-k} - (x+\alpha+\beta)_k (x)_{n-k}),$$

where $\alpha, \beta > 0$, $f_k^2 \ge f_{k-1}f_{k+1}$, and $(x)_k = x(x+1)\cdots(x+k-1)$. Then the Maclaurin coefficients of $Q^{(\alpha,\beta)}$ are non-negative.

Remark. [D. Karp] I have proved the case $\alpha = \beta = 1$ and formulated a number of generalizations of this conjecture in http://arxiv.org/abs/1203.1482

The following conjecture of (McNamara et al.) was proved by P. Brändén. Let $p(x) := \sum_{k=0}^{n} a_k x^k$, with $a_{-1} := a_{n+1} := 0$. If $p \in \mathcal{L}$ - \mathcal{P}^+ , then

$$\sum_{k=0}^{n} \begin{vmatrix} a_k & a_{k+1} \\ a_{k-1} & a_k \end{vmatrix} x^k \in \mathcal{L}\text{-}\mathcal{P}.$$

S. Fisk generalized this statement to polynomials with coefficients formed from the determinants of 3×3 matrices in the conjecture below.

Conjecture .2. If $p \in \mathcal{L}$ - \mathcal{P}^+ , then

$$\sum_{k=0}^{n} |ccca_{k}a_{k+1}a_{k+2}a_{k-1}a_{k}a_{k+1}a_{k-2}a_{k-1}a_{k}|$$

 $x^k \in \mathcal{L}\text{-}\mathcal{P}^+$.

Problem .3. Let $\{\phi_k(x)\}_{k=0}^{\infty}$ and $\{f_k\}_{k=0}^{\infty}$ be log-concave. When is $\sum f_k \phi_k(x)$ log-concave?

4. COMBINATORICS AND GRAPH THEORY

Let S_{2n} be the convex hull of all adjacency matrices of perfect matchings. Let

$$\mu_{2n} := \min\{ \text{haf}(B) : B \in S_{2n} \},$$

where

$$haf(B) := \frac{1}{n!2^n} \frac{\partial}{\partial x_1 \cdots \partial x_{2n}} (x^T B x)^n$$

is the *hafnian* of *B*.

Problem .1.

(1) Is it true that

$$\alpha := \liminf_{n} \frac{\log \mu_{2n}}{2n} > -\infty$$
?

(2) Estimate μ_{2n} .

The type- D_n Eulerian polynomials are given by

$$E(x) := \sum_{w} x^{\#\{s: \operatorname{length}(ws) < \operatorname{length}(w)\}}.$$

Problem .2. Prove that E(x) has only real zeros.

Problem .3. *Is there a decent multivariate extension of the Chudnovsky-Seymour Theorem that the vertex independent set polynomial of a claw-free graph has only real roots?*

Problem .4. Generalize the Chudnovsky-Seymour (Heilmann-Lieb) Theorem. Extend the common interlacing property to several variables.

5. ZEROS OF DERIVATIVES

Problem .1. Let $p \in \mathbb{R}[x]$, $\deg(p) = n > 2$. There are at least n - 1 points of extreme curvature $\kappa(p)$ (more generally where $\kappa'(p) = 0$) [?].

Problem .2. What are the zero spacing effects of higher order differential operators on functions which belong to \mathcal{L} - \mathcal{P} ?

6. ORTHOGONAL POLYNOMIALS

Let (L_n^{α}) denote the generalized Laguerre polynomials. It is known that L_n^{α} and L_n^{α} can have common zeros if |m-n| > 1. Is the number of common zeros linked to arithmetic properties of α ?

Conjecture .1. There are no common zeros between L_m^{α} and L_n^{α} , |m-n| > 1, for α rational.

Problem .2. Let $P_n^{\alpha,\beta}$ denote the Jacobi polynomial of deg n with parameters $\alpha, \beta > -1$. Then $P_n^{\alpha',\beta'}$ and $P_n^{\alpha,\beta}$ interlace for $\alpha \approx \alpha'$, and $\beta \approx \beta'$. Does the failure of interlacing correspond to some physical law being "violated"?

Problem .3. Consider a subspace S of $\mathbb{C}[x]$ of codimension k (defined by k linear constraints, explicitly given). Given a scalar product on $\mathbb{C}[x]$, find an orthogonal basis of S (ordered by degree); some degrees will be missing.

- (1) Which degrees get skipped?
- (2) Characterize these orthogonal polynomials.
- (3) Does this have anything to do with lacunary Padé approximants?

7. RIEMANN Ξ-FUNCTION

Let

$$\Xi(z) := \int_{-\infty}^{\infty} \Phi(t) \cos(zt) dt,$$

where

$$\Phi(t) := \sum_{n=1}^{\infty} (2n^4 \pi^2 e^{9t} - 3n^2 \pi e^{5t}) \exp(-n^2 \pi e^{4t}).$$

4 EDITED BY

Let $p_k(z)$ be the polynomials orthogonal with respect to Φ on $(-\infty, \infty)$. Define

$$P_n(z) := \frac{\det \left[p_i(z_j) \right]_{i,j=1}^n}{\det \left[z_i^{j-1} \right]_{i=1,j=1}^n}, \quad \text{and} \quad Q_n(z) := \frac{\det \left[p_i(z_j) \right]_{i,j=2}^n}{\det \left[z_i^{j-2} \right]_{i,j=2}^n}.$$

Problem .1. Investigate the zeros of P_n and Q_n .

Remark. [D. Dimitrov] The following generalization of the result mentioned above is true.

Let μ be an even, positive measure on \mathbb{R} , and $F(z) := \int_{-\infty}^{\infty} \cos(zt) d\mu(t)$. Let $\{p_k(z)\}_{k=0}^{\infty}$ be the orthogonal polynomials with respect to μ on $(-\infty, \infty)$. Then $F \in \mathcal{L}$ - \mathcal{P} if and only if the associated polynomial $P_n[p_1, \ldots, p_n]$ has purely imaginary zeros, if and only if $Q_n[p_1, \ldots, p_n]$ has no purely imaginary zeros. (for all n)

Problem 8.2. Are there any non-real zeros of

$$\int_0^\infty \Phi^{\alpha}(t) \cos(zt) dt \qquad for \qquad \alpha > 0?$$

8. ZEROS OF SPECIFIC FUNCTIONS

Conjecture .1. Let

$$p_n(z) = \sum_{k=0}^{n} (-1)^k (2k+1) z^{k(k+1)}$$

where, $n = 2, 3, 4, \dots$ Each p_n has no real zeros for even n, and exactly two real zeros for odd n.

Problem .2. Consider the function

$$f(z) := \sum_{k} \frac{z^k}{(a^k + 1)(a^{k-1} + 1)\cdots(a+1)}, \qquad a > 1.$$

For which values of a is f in \mathcal{L} - \mathcal{P} ?

Let

$$P_n(z, w) = \sum_{k=0}^n \binom{n}{k} z^k w^{k(n-k)}$$

Conjecture .3. For all |w| > 1, all the zeros of $P_n(\cdot, w)$ are simple and separated in modulus (by a factor of at least $|w|^2$).

Problem .4. Generalize conjecture .3 to $Q_n(z, w) = \sum_{k=0}^n a_k z^k w^{k(n-k)}$. For what class of $\{a_n\}$ does the conjecture still hold?

Problem .1. Let be $K \subset \mathbb{C}$ be compact, let $\mathbb{C} \setminus K$ be connected, and let f be a continuous function on K which is holomorphic and non-zero on the interior of K. Is there a sequence of polynomials $\{p_n\}_{n=1}^{\infty}$ with no zeros in K such that $p_n \to f$?

Conjecture .2. Let be $K \subset \mathbb{C}$ be compact, $\mathbb{C} \setminus K$ connected, and f be a continuous function on K which is holomorphic and non-zero on the interior of K. Suppose $K \subseteq \{z : \frac{1}{2} < \text{Re}z < 1\}$, then

$$\overline{d}\left(\left\{t \in \mathbb{R} : \|\zeta(\cdot + it) - f(\cdot)\|_{\infty,K} < \epsilon\right\}\right) > 0,$$

where

$$\overline{d}(E) := \limsup_{T \to \infty} \frac{m(E \cap [0, T])}{T}.$$

Remark. [P. Gauthier] Andersson has shown that a positive answer to Problem .1 and a confirmation of Conjecture .2 are equivalent.

Problem .3. Let μ be a probability measure on $\{0,1\}^n$. Consider

$$f(\vec{z}) = \int \vec{z}^{\vec{\alpha}} d\mu(\vec{\alpha})$$

and

$$g(\vec{\lambda}) = \int e^{\vec{\lambda} \cdot \vec{\alpha}} d\mu(\vec{\alpha}).$$

What property of g is equivalent to the stability of f?

Problem .4. Let $p(z) \in \mathbb{C}[z]$, $\deg(p) = n$. Suppose $p(z) \neq 0$ for all $|z| \leq 1$. Define $p^*(z) := z^n \overline{p\left(\frac{1}{z}\right)}$. Then it is known that

 $p(A)p(A)^{\dagger} \ge p^*(A)(p^*(A))^{\dagger}$ for any contractive matrix A.

(A is contractive means $\sup_{x} \frac{||Ax||_2}{||x||_2} < 1$.) In 2D, we replace A with a pair of commuting contractions and p with a bivariate polynomial with no zeros in $\{z : |z| \le 1\} \times \{w : |w| \le 1\}$. The 3D generalization fails – when does it hold?

Problem .5. Find more examples and attempt to characterize Markov processes preserving stability. Explicitly, let $\psi : \mathbb{R}_{MA}[x, y, z] \to \mathbb{R}_{MA}[x, y, z]$ be a linear operator. When is $e^{i\psi} : \mathbb{R}[x, y, z] \to \mathbb{R}[x, y, z]$ stability preserving for all $t \ge 0$?

REFERENCES