STABILITY AND HYPERBOLICITY

EDITED BY

A list of the problems from the workshop on stability, hyperbolicity, and zero localization of functions, held December 5-9, 2011, is presented below. The problems have been loosely categorized for convenience, although many of the problems could be listed under several different headings.

1. Multiplier sequences and CZDS

Problem 3.1. Let $\left\{c_{k}\right\}_{k=0}^{n} \subset \mathbb{R}$ be given. Does there exist a real rooted polynomial, $p(x)$, with zeros outside $[0, n]$ such that $c_{k}=p(k), k=0,1, \ldots, n$?

Problem 3.2. Let $f(z)$ be a meromorphic function. When is the sequence $\{f(k)\}_{k=0}^{\infty}$ a multiplier sequence?

2. Matrix Theory

Problem .1. Study the zeros of Bessis-Moussa-Villani polynomials $t \rightarrow \operatorname{tr}(A+t B)^{m}$.

Problem .2. Find a simple proof of BMV conjecture for 3×3 matrices (and an explicit formula for the BMV measure for 3×3 matrices; the existence of the measure is due to recent work of Stahl).

Problem .3. Given $p \in \mathbb{C}[x], \operatorname{deg}(p)=n$, find an $n \times n$ Hermitian matrix whose inertia $\left(n_{+}, n_{-}, n_{0}\right)$ counts the zeros of p in $H_{+}, H_{-}, H_{0}=\mathbb{R}$.

Problem .4. Any real polynomial can be written as $\operatorname{det}(A-\lambda I)$, where A has the (tridiagonal) form

$$
[\operatorname{cccccc}++-0+-0+\ddots \cdot \ddots-0+--
$$

Problem .5. Investigate the signs of Hurwitz minors for Pólya frequency sequences.

3. Log Concavity

Let $\mathcal{L}-\mathcal{P}$ denote the class of functions which are locally uniform limits of polynomials having only real zeros, and let the class of functions in $\mathcal{L}-\mathcal{P}$ which have only non-negative Maclaurin coefficients be denoted $\mathcal{L}-\mathcal{P}^{+}$.

Problem .1. Let

$$
Q_{n}^{(\alpha, \beta)}:=\sum_{k=0}^{n}\binom{n}{k} f_{k} f_{n-k}\left((x+\alpha)_{k}(x+\beta)_{n-k}-(x+\alpha+\beta)_{k}(x)_{n-k}\right)
$$

where $\alpha, \beta>0, f_{k}^{2} \geq f_{k-1} f_{k+1}$, and $(x)_{k}=x(x+1) \cdots(x+k-1)$. Then the Maclaurin coefficients of $Q^{(\alpha, \beta)}$ are non-negative.

Remark. [D. Karp] I have proved the case $\alpha=\beta=1$ and formulated a number of generalizations of this conjecture in http://arxiv.org/abs/1203.1482

The following conjecture of (McNamara et al.) was proved by P. Brändén. Let $p(x):=\sum_{k=0}^{n} a_{k} x^{k}$, with $a_{-1}:=a_{n+1}:=0$. If $p \in \mathcal{L}-\mathcal{P}^{+}$, then

$$
\sum_{k=0}^{n}\left|\begin{array}{cc}
a_{k} & a_{k+1} \\
a_{k-1} & a_{k}
\end{array}\right| x^{k} \in \mathcal{L}-\mathcal{P}
$$

S. Fisk generalized this statement to polynomials with coefficients formed from the determinants of 3×3 matrices in the conjecture below.

Conjecture .2. If $p \in \mathcal{L}-\mathcal{P}^{+}$, then

$$
\sum_{k=0}^{n} \mid c c c a_{k} a_{k+1} a_{k+2} a_{k-1} a_{k} a_{k+1} a_{k-2} a_{k-1} a_{k}
$$

$x^{k} \in \mathcal{L}-\mathcal{P}^{+}$.

Problem .3. Let $\left\{\phi_{k}(x)\right\}_{k=0}^{\infty}$ and $\left\{f_{k}\right\}_{k=0}^{\infty}$ be log-concave. When is $\sum f_{k} \phi_{k}(x)$ log-concave ?

4. Combinatorics and Graph Theory

Let $S_{2 n}$ be the convex hull of all adjacency matrices of perfect matchings. Let

$$
\mu_{2 n}:=\min \left\{\operatorname{haf}(B): B \in S_{2 n}\right\}
$$

where

$$
\operatorname{haf}(B):=\frac{1}{n!2^{n}} \frac{\partial}{\partial x_{1} \cdots \partial x_{2 n}}\left(x^{T} B x\right)^{n}
$$

is the hafnian of B.

Problem .1.

(1) Is it true that

$$
\alpha:=\liminf _{n} \frac{\log \mu_{2 n}}{2 n}>-\infty ?
$$

(2) Estimate $\mu_{2 n}$.

The type- D_{n} Eulerian polynomials are given by

$$
E(x):=\sum_{w} x^{\#\{s: \operatorname{length}(w s)<\operatorname{length}(w)\}} .
$$

Problem .2. Prove that $E(x)$ has only real zeros.

Problem .3. Is there a decent multivariate extension of the Chudnovsky-Seymour Theorem that the vertex independent set polynomial of a claw-free graph has only real roots?

Problem .4. Generalize the Chudnovsky-Seymour (Heilmann-Lieb) Theorem. Extend the common interlacing property to several variables.

5. Zeros of derivatives

Problem .1. Let $p \in \mathbb{R}[x], \operatorname{deg}(p)=n>2$. There are at least $n-1$ points of extreme curvature $\kappa(p)\left(\right.$ more generally where $\left.\kappa^{\prime}(p)=0\right)$ [?].

Problem .2. What are the zero spacing effects of higher order differential operators on functions which belong to $\mathcal{L}-\mathcal{P}$?

6. ORTHOGONAL POLYNOMIALS

Let $\left(L_{n}^{\alpha}\right)$ denote the generalized Laguerre polynomials. It is known that L_{m}^{α} and L_{n}^{α} can have common zeros if $|m-n|>1$. Is the number of common zeros linked to arithmetic properties of α ?

Conjecture .1. There are no common zeros between L_{m}^{α} and $L_{n}^{\alpha},|m-n|>1$, for α rational.

Problem .2. Let $P_{n}^{\alpha, \beta}$ denote the Jacobi polynomial of $\operatorname{deg} n$ with parameters $\alpha, \beta>-1$. Then $P_{n}^{\alpha^{\prime}, \beta^{\prime}}$ and $P_{n}^{\alpha, \beta}$ interlace for $\alpha \approx \alpha^{\prime}$, and $\beta \approx \beta^{\prime}$. Does the failure of interlacing correspond to some physical law being "violated"?

Problem .3. Consider a subspace S of $\mathbb{C}[x]$ of codimension k (defined by k linear constraints, explicitly given). Given a scalar product on $\mathbb{C}[x]$, find an orthogonal basis of S (ordered by degree); some degrees will be missing.
(1) Which degrees get skipped?
(2) Characterize these orthogonal polynomials.
(3) Does this have anything to do with lacunary Padé approximants?

7. RIEMANN Ξ-FUNCTION

Let

$$
\Xi(z):=\int_{-\infty}^{\infty} \Phi(t) \cos (z t) d t
$$

where

$$
\Phi(t):=\sum_{n=1}^{\infty}\left(2 n^{4} \pi^{2} e^{9 t}-3 n^{2} \pi e^{5 t}\right) \exp \left(-n^{2} \pi e^{4 t}\right)
$$

Let $p_{k}(z)$ be the polynomials orthogonal with respect to Φ on $(-\infty, \infty)$. Define

$$
P_{n}(z):=\frac{\operatorname{det}\left[p_{i}\left(z_{j}\right)\right]_{i, j=1}^{n}}{\operatorname{det}\left[z_{i}^{j-1}\right]_{i=1, j=1}^{n}}, \quad \text { and } \quad Q_{n}(z):=\frac{\operatorname{det}\left[p_{i}\left(z_{j}\right)\right]_{i, j=2}^{n}}{\operatorname{det}\left[z_{i}^{j-2}\right]_{i, j=2}^{n}} .
$$

Problem .1. Investigate the zeros of P_{n} and Q_{n}.

Remark.[D. Dimitrov] The following generalization of the result mentioned above is true.
Let μ be an even, positive measure on \mathbb{R}, and $F(z):=\int_{-\infty}^{\infty} \cos (z t) d \mu(t)$. Let $\left\{p_{k}(z)\right\}_{k=0}^{\infty}$ be the orthogonal polynomials with respect to μ on $(-\infty, \infty)$. Then $F \in \mathcal{L}-\mathcal{P}$ if and only if the associated polynomial $P_{n}\left[p_{1}, \ldots, p_{n}\right]$ has purely imaginary zeros, if and only if $Q_{n}\left[p_{1}, \ldots, p_{n}\right]$ has no purely imaginary zeros. (for all n)

Problem 8.2. Are there any non-real zeros of

$$
\int_{0}^{\infty} \Phi^{\alpha}(t) \cos (z t) d t \quad \text { for } \quad \alpha>0 ?
$$

8. ZEROS OF SPECIFIC FUNCTIONS

Conjecture .1. Let

$$
p_{n}(z)=\sum_{k=0}^{n}(-1)^{k}(2 k+1) z^{k(k+1)}
$$

where, $n=2,3,4, \ldots$ Each p_{n} has no real zeros for even n, and exactly two real zeros for odd n.

Problem .2. Consider the function

$$
f(z):=\sum_{k} \frac{z^{k}}{\left(a^{k}+1\right)\left(a^{k-1}+1\right) \cdots(a+1)}, \quad a>1
$$

For which values of a is f in $\mathcal{L}-\mathcal{P}$?
Let

$$
P_{n}(z, w)=\sum_{k=0}^{n}\binom{n}{k} z^{k} w^{k(n-k)}
$$

Conjecture .3. For all $|w|>1$, all the zeros of $P_{n}(\cdot, w)$ are simple and separated in modulus (by a factor of at least $\left.|w|^{2}\right)$.

Problem .4. Generalize conjecture . 3 to $Q_{n}(z, w)=\sum_{k=0}^{n} a_{k} z^{k} w^{k(n-k)}$. For what class of $\left\{a_{n}\right\}$ does the conjecture still hold?

Problem .1. Let be $K \subset \mathbb{C}$ be compact, let $\mathbb{C} \backslash K$ be connected, and let f be a continuous function on K which is holomorphic and non-zero on the interior of K. Is there a sequence of polynomials $\left\{p_{n}\right\}_{n=1}^{\infty}$ with no zeros in K such that $p_{n} \rightarrow f$?

Conjecture .2. Let be $K \subset \mathbb{C}$ be compact, $\mathbb{C} \backslash K$ connected, and f be a continuous function on K which is holomorphic and non-zero on the interior of K. Suppose $K \subseteq\left\{z: \frac{1}{2}<\operatorname{Re} z<1\right\}$, then

$$
\bar{d}\left(\left\{t \in \mathbb{R}:\|\zeta(\cdot+i t)-f(\cdot)\|_{\infty, K}<\epsilon\right\}\right)>0
$$

where

$$
\bar{d}(E):=\underset{T \rightarrow \infty}{\limsup } \frac{m(E \cap[0, T])}{T}
$$

Remark.[P. Gauthier] Andersson has shown that a positive answer to Problem . 1 and a confirmation of Conjecture .2 are equivalent.

Problem .3. Let μ be a probability measure on $\{0,1\}^{n}$. Consider

$$
f(\vec{z})=\int \vec{z}^{\vec{\alpha}} d \mu(\vec{\alpha})
$$

and

$$
g(\vec{\lambda})=\int e^{\vec{\lambda} \cdot \vec{\alpha}} d \mu(\vec{\alpha})
$$

What property of g is equivalent to the stability of f ?

Problem .4. Let $p(z) \in \mathbb{C}[z], \operatorname{deg}(p)=n$. Suppose $p(z) \neq 0$ for all $|z| \leq 1$. Define $p^{*}(z):=$ $z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$. Then it is known that

$$
p(A) p(A)^{\dagger} \geq p^{*}(A)\left(p^{*}(A)\right)^{\dagger} \text { for any contractive matrix } A
$$

(A is contractive means $\sup _{x} \frac{\|A x\|_{2}}{\|x\|_{2}}<1$.) In $2 D$, we replace A with a pair of commuting contractions and p with a bivariate polynomial with no zeros in $\{z:|z| \leq 1\} \times\{w:|w| \leq 1\}$. The $3 D$ generalization fails - when does it hold?

Problem .5. Find more examples and attempt to characterize Markov processes preserving stability. Explicitly, let $\psi: \mathbb{R}_{M A}[x, y, z] \rightarrow \mathbb{R}_{M A}[x, y, z]$ be a linear operator. When is $e^{t \psi}: \mathbb{R}[x, y, z] \rightarrow$ $\mathbb{R}[x, y, z]$ stability preserving for all $t \geq 0$?

REFERENCES

