Loading Web-Font TeX/Main/Regular
| Register
\newcommand{\Cat}{{\rm Cat}} \newcommand{\A}{\mathcal A} \newcommand{\freestar}{ \framebox[7pt]{$\star$} }

7. Riemann \Xi-function

Let \Xi(z):=\int_{-\infty}^{\infty} \Phi(t)\cos(zt) dt,
where \Phi(t):=\sum_{n=1}^\infty (2n^4\pi^2e^{9t}-3n^2\pi e^{5t})\exp(-n^2\pi e^{4t}).
    1.     Let p_k(z) be the polynomials orthogonal with respect to \Phi on (-\infty,\infty). Define P_n(z):=\frac{\det\left[p_i(z_j)\right]_{i,j=1}^n}{\det\left[z_i^{j-1}\right]_{i=1,j=1}^n}, \qquad\text{and}\qquad Q_n(z):=\frac{\det\left[p_i(z_j)\right]_{i,j=2}^n}{\det\left[z_{i}^{j-2}\right]_{i,j=2}^{n}}.

      Problem 7.1.

      [D. Dimitrov] Investigate the zeros of P_n and Q_n.
          The motivation for this problem is the following. If for all n\in\mathbb{N}, P_n(z,z,\ldots,z) vanishes only when z=i\alpha, with \alpha\in\mathbb{R}, then the Riemann hypothesis is true. Alternatively, if for each n\in\mathbb{N}, Q_n(z,z,\ldots,z) is non-zero on the imaginary axis, then the Riemann hypothesis is true.
        1. Remark. [D. Dimitrov] The following generalization of the result mentioned above is true.

          Let \mu be an even, positive measure on \mathbb{R}, and F(z):=\int_{-\infty}^\infty\cos(zt)d\mu(t). Let \{p_k(z)\}_{k=0}^\infty be the orthogonal polynomials with respect to \mu on (-\infty,\infty). Then F\in\mathcal{L}\text{-}\mathcal{P} if and only if the associated polynomial P_n[p_1,\ldots,p_n] has purely imaginary zeros, if and only if Q_n[p_1,\ldots, p_n] has no purely imaginary zeros. (for all n)
            • Problem 7.2.

              [J. Haglund] Are there any non-real zeros of \int_{0}^\infty \Phi^\alpha(t)\cos(zt)dt \qquad \text{for}\qquad \alpha>0 ?

                  Cite this as: AimPL: Stability and hyperbolicity, available at http://aimpl.org/hyperbolicpoly.