4. Symplectic and log symplectic pairs
-
Problem 4.1.
Let $\mathcal{X}\longrightarrow\Delta$ be a dlt degeneration of Hyperkähler varieties with $K_{\mathcal{X}/\Delta}\simeq\mathcal{O_X}$. Is
\[ \Gamma(\mathcal{X}_0) = \begin{cases} \text{point} & \text{if in type I} \\ \sigma_d & \text{if in type II}\\ \mathbb{CP}^d& \text{if in type III ?} \end{cases} \]
Given $\Delta^*\overset{\phi}{\longrightarrow}\Gamma\backslash\mathbb{D}$, what equivalence relation on $\phi$ ensures that $\Gamma(\mathcal{X}_0)$ is well-defined on equivalence class? Eg. Picard–Lefschetz. -
Problem 4.2.
Can $\text{K3}^{[5]}$ and $\text{OG}_{10}$ be distinguished via combinatorics of $\Gamma(\mathcal{X}_0)$ for degeneration $\mathcal{X}\longrightarrow\Delta$?
"Combinatorics": integral affine structure? Lagrangian Chern class? -
Problem 4.3.
Do 1-parameter Hyperkähler degenerations admit K-trivial, SNC models, after a finite base change?
Note: minimal dlt exist, due to Fujino, Lai. This is true in Type I (KLSV). -
Problem 4.4.
If $(X,D)$ is log sympletic dlt (or plt) pair and $X\backslash X^{\text{SNC}}$ has codimension $\ge3$ in $X$, are the singularities rigid (in the sense of definitions of log sympletic dlt pairs)? -
Problem 4.7.
Examples of dual complexes which are not $\text{Hilb}^n$ or $\text{Kum}^n$ of a K3 degeneration?
degeneration of cubic 4-fold $X\rightsquigarrow V(x_0x_1x_2)$.
$V(x_0x_1x_2+\epsilon f_3)\longrightarrow\Delta_{\epsilon}\rightsquigarrow $ degeneration of FX?
$V(x_0,x_1,x_2,f_3)$ smooth? nodal?
Cite this as: AimPL: Higher-dimensional log Calabi-Yau pairs, available at http://aimpl.org/higherdimlogcy.