3. Mukai conjecture and related problems
-
Problem 3.1.
Mukai Conjecture: If $X$ is smooth Fano, then $$\operatorname{dim}X+\rho(X)-\operatorname{index}(X)\rho(X)\ge0,$$ where equality holds if and only if $X\simeq(\mathbb{P}^n)^m$.
New Conjecture: $-K_X=\sum v_iM_i$, $M_i$ nef Cartier, $\sum v_i\le\operatorname{dim}+\rho$. Equality holds if and only if $X\simeq\prod\mathbb{P}^{n_i}.$
Does New Conjecture implies Mukai Conjecture? -
Problem 3.2.
If every extremal contraction of a Fano is fibre type, is the nef cone simplicial?
Cite this as: AimPL: Higher-dimensional log Calabi-Yau pairs, available at http://aimpl.org/higherdimlogcy.