| Register
\(\newcommand{\Cat}{{\rm Cat}} \) \(\newcommand{\A}{\mathcal A} \) \(\newcommand{\freestar}{ \framebox[7pt]{$\star$} }\)

8. Equivariant Log-Concavity of Stirling Numbers of the First Kind

\usepackage{graphicx} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{enumitem} \usepackage{cancel} \usepackage{tikz, tikz-cd} \usepackage{mathrsfs} \usepackage{upgreek} \usepackage{arydshln} \usepackage{mathtools} \usepackage{comment} \usepackage{mathrsfs} \usepackage{bm}

\newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\bb}[1]{\mathbb{#1}} \newcommand{\all}{ \forall } \newcommand{\te}{ \exists } \newcommand{\mf}[1]{\mathfrak{#1}} \newcommand{\sm}{\setminus} \newcommand{\no}[1]{ \cancel{#1} } \newcommand{\la}{\langle} \newcommand{\ra}{\rangle} \newcommand{\normal}{\triangleleft} \newcommand{\lr}{\leftrightarrow} \newcommand{\llr}{\longleftrightarrow} \newcommand{\ve}{\varepsilon} \newcommand{\es}{\emptyset} \newcommand{\htpy}{\backsimeq} \newcommand{\into}{\hookrightarrow} \newcommand{\xto}[1]{\xrightarrow{#1}} \newcommand{\ms}[1]{\mathscr{#1}}

(Shiyue Li) The sequence of Stirling numbers of the first kind count the number of permutations in $S_n$ decomposing into $k$ disjoint cycles. Precisely, $$ \begin{bmatrix}n \\ k \end{bmatrix} := \#\{\sigma \in S_n \mid \sigma \text{ has } k \text{ distinct cycles}\}.$$ We say a sequence $\{a_i\}$ of nonnegative numbers $a_i$ is log-concave if $$a_i^2 \geq a_{i-1}a_{i+1} \ \forall \ i.$$ The sequence $$\left\{\begin{bmatrix}n\\k\end{bmatrix}\right\}_{k = 0}^{k=n}$$ is known to be log-concave via an analytic proof of real-rootedness of the generating polynomial.

A graded $G$-representation $$ V^\bullet = \oplus_{i = 0} V_k$$ is said to be equivariantly log-concave if, for all $i$, there exists an injection $$\varphi: V_{i-1}\otimes V_{i+1} \into V_{i} \otimes V_i $$ such that $g\cdot \varphi(v) = \varphi(g \cdot v) \all g \in G, \all v \in V_{i-1}\otimes V_{i+1}$.

Question: Is there an equivariantly log-concave $S_n$-representation $V^\bullet = \oplus V_k$ such that $|V_k| = \begin{bmatrix}n\\k\end{bmatrix}$?

      Cite this as: AimPL: Gems of combinatorics, available at http://aimpl.org/gemscombin.