| Register
\(\newcommand{\Cat}{{\rm Cat}} \) \(\newcommand{\A}{\mathcal A} \) \(\newcommand{\freestar}{ \framebox[7pt]{$\star$} }\)

7. Approach to Fargues-Fontaine Curve using THH

    1.     Analogy coming from period rings and the modulo $p$ isomorphism $\text{THH}(\mathbf{F}_p) \cong t_{> 0} (\text{im}(J))^{tC_p}$.

      Problem 7.1.

      There is an identification $\text{THH}(\mathbf{Z}_p) \cong t_{\ge 0} (\text{im}(J))^{tC_p}$. Does this isomorphism yield an integral version of the Fargues-Fontaine curve?

          Cite this as: AimPL: Chromatic homotopy theory and p-adic geometry, available at http://aimpl.org/chromhomotopy.