2. Fundamental properties
-
Problem 2.1.
[W. Gan] Determine notion of stable conjugacy when stable conjugacy classes in \widetilde{G}_F and \widetilde{H}_L naturally are related. -
Problem 2.2.
[J. Adams] In the real case, given a cover of G_{\mathbb{R}}, describe Brylinski-Deligne data. -
ABV for covering groups
Conjecture 2.3.
[P. Trapa] There is a canonical isomorphism as K-groups KRep \widetilde{G}_{\mathbb R} \cong \Big( KPer_{H} (X) \Big)^*,where X is a \mathbb C-algebraic variety and H is a \mathbb C-algebraic group (for the trivial cover, H={^{\vee}}G). -
Covering group of tori
Problem 2.5.
[M. Weissman and S. Lysenko] Let T be a (not necessary split) torus over a p–adic field. Construct \widetilde{T} 1 \longrightarrow \mu_F \longrightarrow \widetilde{T} \longrightarrow T \longrightarrow 1explicitly within Brylinski-Deligne framework.
Cite this as: AimPL: Automorphic forms on covering groups, available at http://aimpl.org/autoformcovergp.