Loading Web-Font TeX/Math/Italic
| Register
\newcommand{\Cat}{{\rm Cat}} \newcommand{\A}{\mathcal A} \newcommand{\freestar}{ \framebox[7pt]{$\star$} }

2. Fundamental properties

    1. Problem 2.1.

      [W. Gan] Determine notion of stable conjugacy when stable conjugacy classes in \widetilde{G}_F and \widetilde{H}_L naturally are related.
        • Problem 2.2.

          [J. Adams] In the real case, given a cover of G_{\mathbb{R}}, describe Brylinski-Deligne data.
            • ABV for covering groups

              Conjecture 2.3.

              [P. Trapa] There is a canonical isomorphism as K-groups KRep \widetilde{G}_{\mathbb R} \cong \Big( KPer_{H} (X) \Big)^*,
              where X is a \mathbb C-algebraic variety and H is a \mathbb C-algebraic group (for the trivial cover, H={^{\vee}}G).
                • Lurie Conjecture

                  Problem 2.4.

                  [S. Lysenko] Twisted Whittaker models by D. Gaitsgory
                    • Covering group of tori

                      Problem 2.5.

                      [M. Weissman and S. Lysenko] Let T be a (not necessary split) torus over a p–adic field. Construct \widetilde{T} 1 \longrightarrow \mu_F \longrightarrow \widetilde{T} \longrightarrow T \longrightarrow 1
                      explicitly within Brylinski-Deligne framework.
                          Nice subcases: when T is anisotropic or unramified.
                        • Problem 2.6.

                          [J. Adams] What is special about 2-fold covers?
                              Maybe, \pm \in \mathbb Q?

                              Cite this as: AimPL: Automorphic forms on covering groups, available at http://aimpl.org/autoformcovergp.