2. Fundamental properties
-
Problem 2.1.
[W. Gan] Determine notion of stable conjugacy when stable conjugacy classes in $\widetilde{G}_F$ and $\widetilde{H}_L$ naturally are related. -
Problem 2.2.
[J. Adams] In the real case, given a cover of $G_{\mathbb{R}}$, describe Brylinski-Deligne data. -
ABV for covering groups
Conjecture 2.3.
[P. Trapa] There is a canonical isomorphism as $K$-groups \[ KRep \widetilde{G}_{\mathbb R} \cong \Big( KPer_{H} (X) \Big)^*, \] where $X$ is a $\mathbb C$-algebraic variety and $H$ is a $\mathbb C$-algebraic group (for the trivial cover, $H={^{\vee}}G$). -
Covering group of tori
Problem 2.5.
[M. Weissman and S. Lysenko] Let $T$ be a (not necessary split) torus over a $p$–adic field. Construct $\widetilde{T}$ \[ 1 \longrightarrow \mu_F \longrightarrow \widetilde{T} \longrightarrow T \longrightarrow 1 \] explicitly within Brylinski-Deligne framework. -
Problem 2.6.
[J. Adams] What is special about $2$-fold covers?
Cite this as: AimPL: Automorphic forms on covering groups, available at http://aimpl.org/autoformcovergp.